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SUMMARY

A novel approach that embeds the Boussinesq-type like equations into an implicit non-hydrostatic model
(NHM) is developed. Instead of using an integration approach, Boussinesq-type like equations with a
reference velocity under a virtual grid system are introduced to analytically obtain an analytical form of
pressure distribution at the top layer. To determine the size of vertical layers in the model, a top-layer
control technique is proposed and the reference location is employed to optimize linear wave dispersion
property. The efficiency and accuracy of this NHM with Boussinesq-type like equations (NHM-BTE) are
critically examined through four free-surface wave examples. Overall model results show that NHM-BTE
using only two vertical layers is capable of accurately simulating highly dispersive wave motion and wave
transformation over irregular bathymetry. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Efficient and accurate modeling of surface wave motions plays an important role in many coastal
and ocean engineering problems. For several decades, a great deal of efforts has been paid to
develop unified models that can effectively predict water wave propagation with varying degree
of dispersive and nonlinear effects [1, 2]. The Boussinesq-type wave equations, one kind of depth-
integrated models, provide an efficient and accurate framework to model wave propagating from
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deep water to shallow water. The basic concept is to reduce the vertical coordinate by considering
a certain degree of the non-hydrostatic effects (attributed to the vertical acceleration of fluids). For
example, Peregrine [3] derived the conventional Boussinesq equations by integrating continuity
equation and momentum equations over the water depth under the assumption of equal and weak
nonlinearity and frequency dispersion. Continuous progress has been made to remove the original
constraints to nonlinear (larger wave height) and shorter (deeper water depth) waves through the
modified forms of Boussinesq-type equations [4–10]. Extensive review of this subject can refer to
Dingemans [11], Madsen and Schäffer [12], and Kirby [13] and will not be discussed here. While
the latest Boussinesq-type wave models are capable of simulating highly nonlinear and dispersive
waves, several challenging issues, (i) assumptions of irrotational and inviscid flow; (ii) difficulties
in describing vertical flow structure and wave breaking; and (iii) complexities and stabilities due
to higher-order derivatives of mathematical equations and numerical schemes, have confront many
researchers [14–17].

An alternative approach to tackle the above-challenging issues is to solve the three-dimensional
(3D) Navier–Stokes equations (NSEs) that directly include the non-hydrostatic pressure in the
vertical direction. There have been a great amount of efforts paid to develop accurate and efficient
non-hydrostatic models (NHMs) for predicting wave propagating from deep water to shallow water.
From the numerical algorithm viewpoint, methods to solve the NSE or NHM, in general, can be
classified into three categories: (i) explicit projection methods [18–24], (ii) semi-implicit, fractional
step methods [25–29], and (iii) fully implicit methods [30–33]. For explicit projection methods or
semi-implicit methods, an iterative matrix solver is usually needed to solve the resulting pressure
Poisson equation. On the other hand, fully implicit methods can discretize the NSE to yield a
block tri-diagonal matrix system with the unknown horizontal velocity, which is directly solved
without iteration.

In termsofmodeling themoving free-surface, severalmethods have been successfully incorporated
into the NHMs. In general, there are (i) marker and cell method [34, 35], (ii) volume of fluid method
[36, 37], (iii) arbitrary Lagrangian–Eulerian method [38, 39], (iv) level-set method [40, 41], and (v)
surface height method [42]. All thesemethods except for the last one is capable of tracking/capturing
complicated free surfaces such as overturning/breakingwaves but requires a relatively high computa-
tional expense. This is particularly demanding for 3D surface wave modeling. On the other hand, the
surfacewaveheightmethodobtains the free-surface elevation as a single-valued functionof horizontal
location and time. It has been demonstrated that NHMs using the surface heightmethod is an effective
method to simulate small-amplitude waves and steep non-overturningwaves [19, 25–27, 32, 43, 44].

Accurately expressing the free-surface boundary condition in non-hydrostatic modeling has a
great influence on capturing wave propagation [22, 32]. Previous studies show that NHMs with a
hydrostatic pressure at the top layer require a relatively large number of vertical layers (10–20
cells) to satisfactorily simulate dispersive waves [20, 25–27, 29, 30]. To reduce the required number
of vertical layers, Stelling and Zijlema [22] proposed a Keller-box scheme, an edged-based grid
system in the vertical direction, so that the pressure boundary condition at the top layer can be
exactly assigned without any approximation. Zijlema and Stelling [28] later employed the Keller-
box scheme into their semi-implicit finite volume NHM. Recognizing most models based on a
staggered grid system, Yuan and Wu [31, 32] proposed an integration method to successfully
remove the top-layer hydrostatic pressure assumption. Subsequently, Choi and Wu [23] employed
the integration method and Ahmadi et al. [45] proposed an interpolation approach, a similar concept
like the integral approach but based on direct numerical discretization for the top-layer pressure,
to their explicit projection-based non-hydrostatic model. Overall results from these models that
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consider the effects of non-hydrostatic pressure at the top layer indicate that only a small number
of vertical layers (2–5 layers, an order of magnitude smaller than models without non-hydrostatic
pressure) is needed for simulating nearshore wave transformation including shoaling, dispersion,
refraction, and diffraction phenomena. Yuan and Wu [44] reported that the required number of
vertical layers depends on a non-dimensional relative water depth Kh, where K and h are the wave
number and water depth, respectively. It is also recognized that more vertical layers are required
to resolve highly dispersive deep-water waves. For example, under a given error tolerance of 1%
phase speed, a two-layer model is accurate up to Kh=1 while a five-layer model can resolve linear
dispersion up to Kh=5. A so-called top-down resolving (TDR) technique was also suggested to
determine a set of suitable thickness for each vertical layer.

In this study, a novel method that combines the Boussinesq-type like equations at the free
surface and a NHM is developed and examined. Without imposing irrotational and inviscid flow
assumptions, an analytical form of pressure distribution based on the Boussinesq-type like equations
with a reference velocity is embedded into the NHM by Yuan and Wu [44]. In addition, a top-layer
control (TLC) technique, instead of the TDR technique, is also proposed to optimize the linear
wave dispersion property. Performance and comparison between the NHM with Boussinesq-type
like equations (NHM-BTE) and NHM are illustrated through four free-surface wave examples. In
the following, Section 2 presents the governing equations and the boundary conditions. Section 3
states the numerical methods including general discretization, the embedded Boussinesq-type
like equations, and overall algorithm. In Section 4 four examples including sloshing waves and
progressive waves over two-dimensional (2D) and 3D uneven bottom topography are used to
examine the accuracy and efficiency of the model. Finally, summary and conclusions are given in
Section 5.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

For simulating free-surface flows, the governing equations are the unsteady, incompressible, 3D
NSEs in a Cartesian coordinate system (x, y, z) and time t . Figure 1 shows a computational
domain, which is vertically bounded between the bottom z=−h(x, y) and the moving free surface
z=�(x, y, t), where the water depth h(x, y) and the free-surface elevation �(x, y, t) are measured
from the undisturbed mean water level.

The governing equations that satisfy the conservation of mass and momentum are
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where u(x, y, z, t), v(x, y, z, t), and w(x, y, z, t) are the velocity components in the x , y, and z
directions, respectively; P(x, y, z, t) is the normalized pressure, i.e. pressure divided by a constant
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Figure 1. (a) A sketch of the computational domain (solid lines) and the virtual frame
(dashed lines) under a Cartesian grid system, and staggered arrangements of variables at

(b) free-surface cells, (c) interior cells, and (d) bottom cells.

reference density; g is the gravitational acceleration constant; and � is the kinematic viscosity and
is zero for an inviscid fluid.

Various boundary conditions are used for modeling free-surface waves. The kinematic boundary
conditions at the impermeable bottom and the free surface are

u
�h
�x

+v
�h
�y

+w
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=0 (5)
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and

��
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+u

��
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=w|z=� (6)

respectively. By integrating the continuity equation (1) over the water depth and applying Leibniz’s
rule with the kinematic boundary conditions (5) and (6), we obtain the conservative form of
free-surface equation:
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−h
v dz=0 (7)

In addition, the continuity of normal stress at the free surface is enforced, i.e. P(x, y,�, t)= Pa,
where Pa is the atmospheric pressure and taken as zero here. At the inflow boundary, the horizontal
velocity component is specified by either analytical solutions or laboratory conditions. To avoid
unwanted waves generated by impulse motions, we use a ramp-function, i.e.

1

2

(
1+ tanh

t−2T

T

)

where T is the wave period. At the outflow boundary, the combination of the Sommerfeld radiation
boundary condition and a sponge layer technique [31, 35] is employed to minimize wave reflection
into the computational domain.

3. NUMERICAL METHODS

In this paper, the Boussinesq-type like equations are embedded under a virtual grid framework
system into a NHM [32]. Instead of using an integration method [32, 44], an interpolation method
[19, 45], and a ghost cell approach [46], we employ the Boussinesq-type like equations to exactly
describe the vertical pressure distribution using the non-hydrostatic velocity as the reference
velocity. This new method provides an effective way to characterize the top layer pressure under
the staggered grid system. In the following, general discretization of NHM is briefly described
here and details of numerical algorithm can be referred to Yuan and Wu [32]. Subsequently, the
development and implementation of the embedded Boussinesq-type like equations under the virtual
grid system are presented in Section 3.2. Section 3.3 will summarize the overall algorithm of
the model.

3.1. General discretization

The NHM is based on a Cartesian staggered grid system. Figure 1 shows the computational domain
discretized by N1, N2, and N3 cells in the x , y, and z directions with the grid indices i , j , and k,
respectively. In the model a non-uniform grid spacing, �xi , �y j , and �zi, j,k along each direction
can be set. To delineate irregular bathymetries, an effective partial-cell method [47] is used. An
implicit method is applied to discretize the governing equations, which would be presented in
matrices next.

Continuity equation: After discretizing the continuity equation (1) from the bottom cell to
the free-surface cell, the vertical velocity at the position (i, j,k+ 1

2 ), i.e. wi, j,k+1/2, is related to
the lower vertical velocity at the position (i, j,k− 1

2 ), i.e. wi, j,k−1/2, and its adjacent horizontal
velocities. Applying the kinematic boundary condition (5), the discretized continuity equation in
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a matrix form is

wn+1
i, j = Bwun+1

i−1/2, j +Cwun+1
i+1/2, j +Dwvn+1

i, j−1/2+Ewvn+1
i, j+1/2 (8)

where the single overbar of u, v, and w represents a column vector and the double overbar of

Bw, Cw, Dw, and Ew denotes 2D matrices. The superscript index n in Equation (8) denotes time
discretization.

Free-surface equation: The free-surface displacement is obtained by discretizing the free-surface
equation (7) with the Crank–Nicolson scheme, i.e. yielding
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where B f s, C f s, Df s, and E f s are constant column vectors.
Horizontal momentum equations: The Crank–Nicolson scheme is applied to discretize the hori-

zontal momentum equations (2) and (3) in the x- and y-directions, respectively. The discretized
horizontal momentum equations at positions (i+ 1

2 , j,k) and (i, j+ 1
2 ,k) are
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n+1
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n+1
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where Exl , Eyl , Fxl , and Fyl , with l=1,2, and 3, are all matrices. Note that for top-layer cells, the
size of the cells varies with respect to the horizontal position and time. To calculate the horizontal
pressure gradient, we interpolate the pressure Pi, j,N3=3 to the same z level, P ′

i, j,N3=3 (see the
open circle in Figure 1(b)). The similar procedure for the horizontal pressure gradient is applied
to bottom-layer cells (see the open circle in Figure 1(d)) .

Vertical momentum equation: For layers below the top layer (Figure 1(c)), the Crank–Nicolson
scheme is also applied to discretize the vertical momentum equation (4) at the position (i, j,k+ 1

2 ).
Substituting Equation (8) of the vertical velocity into the discretized vertical momentum equation
gives

Pn+1
i, j,k = Pn+1

i, j,k+1+Bvmun+1
i−1/2, j +Cvmun+1

i+1/2, j +Dvmvn+1
i, j−1/2+Evmvn+1

i, j+1/2+Fvm (11)

where Bvm, Cvm, Dvm, and Evm are constant column vectors. In Equation (11) the pressure
at lower layers is related to the one at upper layers and its adjacent horizontal velocities. To
explicitly express the pressure at lower layers, a top-layer pressure is needed. Instead of using the
integration approach proposed by Yuan and Wu [44], in this paper we introduce analytical-based
Boussinesq-type like equations to exactly describe the vertical pressure distribution. Details are
presented next.

3.2. Embedded Boussinesq-type like equations

The existing NHM [44] is under a Cartesian staggered system. Here, we embed the Boussinesq-
type like equations with a reference velocity [5] at a specific depth to optimize the linear wave
dispersion property. Figure 2 shows the location of the reference velocity under a virtual grid
system (dashed frames) and a non-hydrostatic physical grid system (solid frames). The reference
location is specified by zB(x, y)=−�B ·h(x, y) where �B is a parameter bounded between 0 and 1.
There are three main steps.
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Figure 2. (a) Computational grids (solid frames) for the non-hydrostatic model and
(b) virtual grids and the location of the reference velocity (dashed frames) for vertical

velocity w, horizontal velocity u, and pressure P .

First, using Taylor expansion of the velocity at the reference location zB we obtain the horizontal
velocity profiles
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are calculated by imposing the continuous condition between the Boussinesq-type like equa-
tions and the NHM. In other words, u|BEz=zB =ui, j,kB and v|BEz=zB =vi, j,kB, where ui, j,kB, vi, j,kB
are the reference velocities and can be obtained by the interpolation of the NHM, i.e. ui, j,kB =
fu(ui, j,k,ui, j,k±1) and vi, j,kB = fv(vi, j,k,vi, j,k±1). The similar procedure is also performed to the
rest of the first and second derivatives of horizontal velocities. Different from the Boussinesq-type
equations [5, 6, 48], our embedded Boussinesq-type like equations are free of the irrotational flow
assumption.

To determine the vertical velocity profile, we substitute Equations (12a) and (12b) into the
integrated continuity equation (1) from the reference location zB to an arbitrary location z, yielding
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are evaluated at the reference location zB. Similarly, we impose the continuous condition between
the Boussinesq-type like equation and the NHM.

The final step is to obtain an analytical-based pressure profile. Integrating the vertical momentum
equation (4) from z to the free surface, applying the Leibniz’s rule, and substituting free-surface
kinematic boundary condition (6) and free-surface pressure condition we obtain the pressure field
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Instead of directly discretizing the above equation for the top-layer cell [44], we substitute the
analytical-based velocity profile of Equations (12a), (12b), and (13) into Equation (14), yielding
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The vertical pressure distribution based on the Boussinesq-type like equations enables the NHM to
evaluate the top-layer pressure without any approximation, i.e. Pi, j,N3 = P|BEz=z∗ , where z

∗ represents
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the level at the center of the top-layer cell. Discretizing Equation (15) using the Crank–Nicolson
scheme, we obtain the top-layer pressure
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≈ aTNP0�
n+1
i, j +aTNP1w
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with
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Substituting Equations (8) and (9) into Equation (16) gives the top-layer pressure

Pn+1
i, j,N3

= Btpun+1
i−1/2, j +Ctpun+1

i+1/2, j +Dtpvn+1
i, j−1/2+Etpvn+1
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where Btp, Ctp, Dtp, and Etp are constant column vectors.

3.3. Overall algorithm

In this study, we present a novel method to analytically specify the top-layer pressure that is based
on Boussinesq-type like equations. The pressure would be embedded into the NHM by imposing
the continuous conditions at a reference location, allowing one free parameter to optimize linear
wave properties [5]. In other words, the pressure field in Equation (14) can be directly determined
by the embedded Boussinesq-type like equations without any approximation. Substituting the
new top-layer pressures of Equation (17) and pressure at lower layers of Equation (11) into the
discretized horizontal momentum equations (10a) and (10b) gives the new resulting matrix system:

Exu1u
n+1
i−1/2, j +Exu2u

n+1
i+1/2, j +Exu3u

n+1
i+3/2, j +Exv1v

n+1
i, j−1/2+Exv2v

n+1
i, j+1/2=Gx1 (18a)

Eyv1v
n+1
i, j−1/2+Eyv2v

n+1
i, j+1/2+Eyv3v

n+1
i, j+3/2+Eyu1u

n+1
i−1/2, j +Eyu2u

n+1
i+1/2, j =Gy1 (18b)

where Exu p, Exvq , Eyvp, and Eyuq with p=1,2, and 3 and q=1 and 2 are all matrices. With
the embedded Boussinesq-type like equations, the form of resulting matrix system is the same but
the coefficients are different from those in [44]. A domain decomposition method [32] is used
to decompose the original matrix system of Equations (18a) and (18b) into a series of vertical
2D problems that can be solved by a direct block tri-diagonal matrix solver [49]. Convergence
of all vertical 2D problems would be the solution of horizontal velocity at the updated time
step. Finally, the vertical velocity component, free-surface elevation, and pressure are updated by
back-substituting the solved horizontal velocity component.

4. NUMERICAL EXPERIMENTS

To examine the accuracy and efficiency of the new NHM-BTE, four examples of free-surface waves
are used in our numerical experiments here. For all these examples, viscosity can be negligible and
is therefore set to zero. First, we model the 2D free sloshing wave in a fixed tank to examine the
effects of frequency dispersion. Results including surface displacement, velocity profile, and wave
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Figure 3. Configuration of an initial free-surface profile of a 2D free sloshing wave in a fixed tank.

celerity predicted by both NHM-BTE and NHM would be compared with analytical solutions.
Next to examine the model’s capability in predicting 3D surface displacement and velocity field,
3D forced sloshing wave with cross horizontal excitations is chosen. Results from both models
will be compared with analytical solutions. Our last two examples are periodic wave propagation
over a 2D submerged bar and a 3D elliptic shoal, which would be used to demonstrate the accuracy
and efficiency of NHM-BTE in modeling nearshore wave transformation over uneven bottoms.

4.1. Free sloshing wave in a fixed tank

One of the common benchmark tests, free sloshing (standing) wave, is used to examine the accuracy
and efficiency of NHM-BTE. Figure 3 shows the dimension of a 2D tank with a length L and still
water depth h=1m. Here, the first-mode free-surface sloshing wave, i.e. wave length �=2L , is
initially prescribed as

�(x, t=0)=a ·cos(Kx) ·cos(�t) (19)

where a is the wave amplitude, K =2�/� is the wave number, and � is the wave angular frequency
and is determined by linear dispersion relation �=√

gk tanh(Kh). Under linear wave theory, the
horizontal velocity is

u(x, z, t)= agK

�
· cosh[K (h+z)]

cosh(Kh)
·sin(Kx) ·sin(�t) (20)

To examine the effects of frequency dispersion, we use three different lengths of the sloshing tank
(L=4.0, 2.0 and 1.0m), giving Kh=0.785, 1.57, and 3.14, respectively, which are equivalent to
nearly shallow-water, transitional-water, and deep-water conditions. The wave amplitude a=0.01m
is set to satisfy linear wave theory, yielding aK =0.00785, 0.0157, and 0.0314�1 for the three
tanks. In the model, the computational domain is discretized by 20 horizontal cells in the x direction
and two and four vertical layers in the vertical z direction. For NHM, the size of each vertical layer
is determined using the TDR technique [44] that maintains a fine resolution K�z from the top
layers down to the one just above the bottom layer. For NHM-BTE, a TLC technique is proposed
here. Specifically if Kh�3.14, a uniform vertical layer is applied. If Kh>3.14, the maximum
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Table I. Top-layer thickness and the reference velocity location for a two-layer NHM-BTE.

Kh K�ztop �ztop/h zB/h=�B

3.14 1.57 0.5 0.445
6 2.355 0.393 0.400
9 2.355 0.262 0.315
12 2.355 0.196 0.268
15 2.355 0.157 0.237

thickness of the top layer would be K�ztop=2.355 (75%×3.14) since the validity of Boussinesq-
type equations is up to kh=3.14 [5, 48]. The rest of the layer(s) below are set to be uniform. After
determining the layer thickness, we would set the reference velocity following Table I. Here, the
reference location for these three tanks is zB(x, y)=−�B ·h(x, y), where �B=0.445 The time step
is �t=Cr ·�x/c by setting the Courant number Cr =0.25, where the wave phase speed

clinear= �

K
=
√

g

K
tanh(Kh)

Figures 4 and 5 show the comparison of the analytical solution and model results using two and
four vertical layers, respectively. For the nearly shallow-water tank, the free-surface elevations at
x=0.025L calculated by the two-layer NHM and the two-layer NHM-BTE (Figure 4(a)) and the
four-layer NHM and the four-layer NHM-BTE (Figure 5(a)) all match well with the analytical solu-
tion, demonstrating the capability of both NHM and NHM-BTE using small vertical layers in simu-
lating shallow-water wave propagation. However, the free-surface elevation predicted by the two-
layer NHM has a noticeable and significant lag in phase for the transitional-water tank (Figure 4(b))
and the deep-water tank (Figure 4(c)), respectively. The phase lag error in the transitional/deep
tank can be corrected/decreased if the four-layer NHM is used (see Figure 5(b)/5(c)), indicating
the importance of required vertical layer number in NHM for resolving wave frequency dispersion.
In contrast to NHM, Figures 4(b) and 4(c) show that the two-layer NHM-BTE has well predicted
the linear wave speed for the transitional-water tank and deep-water tank, demonstrating the signif-
icant role of our new top-layer pressure treatment in NHM-BTE in this paper. As a consequence
further phase improvement by the four-layer NHM-BTE is not needed (Figures 5(b) and 5(c)).

To address the model’s capability in resolving the velocity field, we use the deep-water dispersive
tank here. Figure 6 shows the comparison between the predicted horizontal velocity profile and
analytical solution at three stages, i.e. t=5.25T , 5.50T , and 5.75T . The horizontal velocity
predicted by either the two- or four-layer NHM does not match with the analytical solution,
supporting the phase lag errors found in the free-surface elevation in Figures 4(c) and 5(c).
On the other hand, the two-layer NHM-BTE accurately resolves the velocity profile and wave
phase speed, indicating that the new pressure field obtained from our embedded Boussinesq-type
like equations plays an essential role in capturing linear dispersive wave propagation. From the
viewpoint of efficiency, the two-layer NHM-BTE has achieved similar results obtained from the
four-layer NHM-BTE. Compared with many other traditional NHMs [19–21, 24–27, 29, 30, 39]
and efficient NHMs [32, 44–46] that require relatively a large number of vertical layers (5–20 cells)
to satisfactorily simulate dispersive waves, the present approach that incorporates the Boussinesq-
type like equations into the NHM is critical to further reduce required vertical layers.
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Figure 4. Computed free-surface elevation at x=0.025L of the three tanks: (a) Kh=0.785;
(b) Kh=1.57; and (c) Kh=3.14. Analytical solution (solid lines), two-layer NHM (solid

triangles), and two-layer NHM-BTE (solid circles).

To quantify the above results predicted by the models, we use a relative error of wave speed,
i.e. 	c=(cmodel−clinear)/clinear with cmodel the phase speed predicted by the model. Figure 7 shows
the normalized wave speed and relative error versus a non-dimensional relative water depth Kh.
Note that for this numerical test we keep the water depth the same but vary the horizontal size of
the tank. For NHM, the size of each vertical layer is determined using the TDR technique [44].
For NHM-BTE, the TLC technique is employed here to determine the optimal layer thickness (see
Table I). Three main points are discussed here. First two- and four-layer NHMs both under-predict
the wave speed. The error increases as Kh (the degree of dispersion) increases. Given an error
tolerance 	c�0.01, two-layer NHM model is accurate up to Kh=1 and four-layer NHM resolves
linear dispersion up to Kh≈3. Interestingly, the error analysis supports the reported vertical layers
(e.g. 2–4 cells) found in many wave propagation examples by Stelling and Zijlema [22], Yuan and
Wu [32, 44], and Zijlema and Stelling [29]. Second, it is apparent that two-layer NHM-BTE has
well resolved the wave phase speed up to Kh≈12, indicating the importance of the Boussinseq type
like equations at the top-layer pressure treatment in deep-water wave modeling. Third four-layer
NHM-BTE also resolves the wave phase speed of Kh≈15, and increasing the vertical layers would
further facilitate wave modeling from offshore to nearshore. Overall the predicted results with error
analysis of the free-sloshing wave example here not only exhibits the accuracy and efficiency of the
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Figure 5. Same as Figure 4 except for four-layer NHM (open triangles)
and four-layer NHM-BTE (open circles).

present model in modeling linear wave dispersion but also demonstrates the success of embedding
the Boussinesq-type like equations with the TLC technique into the non-hydrostatic model.

4.2. Forced sloshing wave in a horizontal excited 3D tank

To examine the model’s capability in predicting 3D surface wave displacement and velocity field,
we apply the models to predict forced sloshing wave in a near-excited tank. Figure 8 shows the
dimension of a 3D tank with Lx =1m and Ly =1m and the water depth h=1m, giving the
natural frequency �pq =√gK pq tanh(Kpqh) with the corresponding wave mode (p,q) and wave

number Kpq =
√

(p�/Lx )2+(q�/Ly)2, where p and q are integers. To create a near-resonance

sloshing condition, the tank is applied by cross horizontal accelerations ẍ(t)=−ax ·�2
x ·sin(�x t)

and ÿ(t)=−ay ·�2
y ·sin(�yt), where a pair of overdots of ẍ(t) and ÿ(t) represents the second

derivatives of displacement with respect to time; ax and ay , the magnitude of amplitude, are both
equal to 0.372×10−3m; and �x and �y , the sloshing frequencies, are set to the first mode of
near-resonant condition, i.e. �x =0.9999�10 and �y =0.9999�01, respectively.

While forced sloshing wave in a 2D/3D rectangular tank has been extensively studied [50–56],
analytical solution for this condition here is rare. Following the approach for a 2D forced sloshing
tank by Faltinsen et al. [51], we obtain the analytical solution by a superposition of Faltinsen’s
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Figure 6. Computed horizontal velocity profiles in a deep-water tank (Kh=3.14) at
t=(a) 5.25T , (b) 5.50T , and (c) 5.75T . Analytical solution (solid lines), two-layer NHM
(solid triangles), four-layer NHM (open triangles), two-layer NHM-BTE (solid circles),

and four-layer NHM-BTE (open circles).

results in the x–z and y–z planes, yielding the surface displacement

� = �x +�y

= +ax
g

·
{(

x− Lx

2

)
·�2

x +
∞∑

m=0
Cm0 ·�x ·sin

[
Km0

(
x− Lx

2

)]}
·sin(�x t)

− ax
g

·
∞∑

m=0
�m0 ·

(
Cm0+ Hm0

�2
x

)
·sin

[
Km0

(
x− Lx

2

)]
·sin(�m0t)

+ ay
g

·
{(

y− Ly

2

)
·�2

y+
∞∑

m=0
C0m ·�y ·sin

[
K0m

(
y− Ly

2

)]}
·sin(�yt)

− ay
g

·
∞∑
n=0

�0m ·
(
C0m+ H0m

�2
y

)
·sin

[
K0m

(
y− Ly

2

)]
·sin(�0mt) (21)
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Figure 7. Normalized wave speed (solid lines) and relative error versus Kh. Two-layer
NHM ( ), four-layer NHM ( ), two-layer NHM-BTE (short dashed line),

and four-layer NHM-BTE (long dashed line).

Figure 8. Configuration of a 3D forced sloshing wave in a moving tank. Two open arrows represent the
locations A and B where time series of surface displacement are taken.

where

Hm0=�3
x
4

Lx

(−1)m

K 2
m0

, H0m =�3
y
4

Ly

(−1)m

K 2
0m

Cm0= Hm0

�2
m0−�2

x

and C0m = H0m

�2
0m−�2

y
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and the velocity fields

u = ax ·
∞∑

m=0

[
Cm0 ·cos(�x t)−

(
Cm0+ Hm0

�2
x

)
·cos(�m0t)

]
· cosh[Km0(z+h)]

cosh(Km0h)

×Km0 ·cos
[
Km0

(
x− Lx

2

)]
(22a)

v = ay ·
∞∑

m=0

[
C0m ·cos(�yt)−

(
C0m+ H0m

�2
y

)
·cos(�0mt)

]
· cosh[K0m(z+h)]

cosh(K0mh)

×K0m ·cos
[
K0m

(
y− Ly

2

)]
(22b)

w = ax ·
∞∑

m=0

[
Cm0 ·cos(�x t)−

(
Cm0+ Hm0

�2
x

)
·cos(�m0t)

]
· cosh[Km0(z+h)]

cosh(Km0h)

×Km0 ·sin
[
Km0

(
x− Lx

2

)]
+ay ·

∞∑
n=0

[
C0m ·cos(�yt)−

(
C0m+ H0m

�2
y

)
·cos(�0mt)

]

×cosh[K0m(z+h)]
cosh(K0mh)

·K0m ·sin
[
K0m

(
y− Ly

2

)]
(22c)

In the model, a non-inertial moving frame with the cross horizontal acceleration motions is
chosen to avoid the treatment of complicated boundary conditions at the moving walls. The
resulting NSEs are the same except for the horizontal momentum equations:

�u
�t

+u
�u
�x

+v
�u
�y

+w
�u
�z

=−�P
�x

+�
�2u
�x2

+�
�2u
�y2

+�
�2u
�z2

− ẍ(t) (23a)

�v

�t
+u

�v

�x
+v

�v

�y
+w

�v
�z

=−�P
�y

+�
�2v
�x2

+�
�2v
�y2

+�
�2v
�z2

− ÿ(t) (23b)

The computational domain is discretized by a set of horizontally uniform 20×20 grids. For
NHM, two and four vertical layers in the vertical z direction are employed following the TDR
technique [44]. For NHM-BTE, only two vertical layers are used and the reference velocity is set
following the TLC technique. The reference velocity is set at the bottom of the top-layer cell,
i.e. zB(x, y)=−�B ·h(x, y), where �B=0.445 The time step is determined by the Courant number
Cr=0.25 and the model runs up to t=10T , where the wave period T =2�/�10=2�/�01=1.134s
in this case. Initially (t=0s), the fluid is at rest. When t>0s, the sloshing motion subject to
x(t)=ax ·sin(�x t) and y(t)=ay ·sin(�yt) is then applied.

Figure 9 shows the comparison of surface displacement time series at locations A (x=
0.025Lx , y=0.025Ly) and B (x=0.975Lx , y=0.975Ly) between the analytical solution in
Equation (21) and NHM and NHM-BTE. Consistent with our previous results of free sloshing
wave, two-layer NHM (see Figure 9(a)) is incapable of predicting wave speed and amplitude
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Figure 9. Computed surface displacement time series by (a) two-layer NHM, (b) four-layer NHM, and
(c) two-layer NHM-BTE at location A—(solid circles) with analytical solution (solid lines) and location

B—(open circles) with analytical solution (dashed lines).

under the K10h=K01h=3.14 condition. Figure 9(b) shows that the four-layer NHM dramatically
reduces the errors in phase speed and wave amplitude, further supporting the required vertical
layer number results in Figure 7 if a NHM is used. In contrast, Figure 9(c) shows that the
two-layer NHM-BTE has well-predicted phase speed and amplitude of forced sloshing waves,
demonstrating the accuracy and efficiency of NHM-BTE in predicting 3D surface waves.

In Figure 10, the time series of the 3D velocity field time series by the analytical solution in
Equation (22) and the two-layer NHM-BTE are depicted. It is of interest that horizontal velocities
under forced sloshing waves are out of phase 180◦, different from those in free sloshing waves. At
t=nT (where n is an integer), the velocity is zero everywhere and surface displacement reaches
the maximum, yielding the maximum potential energy. Overall, the above results obtained by the
two-layer NHM-BTE are in excellent agreement with analytical solutions. Compared with other
NSE models by Wu et al. [52] with 12 vertical grids, Chen and Chiang [53, 55] with 20 vertical
grids, and Kim [54] with 30 vertical grids, the NHM-BTE employing two vertical layers efficiently
and accurately simulates 3D surface wave motions. Finally to the best of our knowledge, no
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Figure 10. Comparison of velocity field: (a) u; (b) v; and (c) w time series between
two-layer NHM-BTE (solid circles, open circles) and analytical solution (solid lines, dashed

lines) at locations (A, B), respectively.

velocity field results under this condition obtained with a NHM and analytical solution have been
published earlier.

4.3. Wave propagation over a 2D submerged bar

In this example we aim to examine NHM-BTE’s capability in modeling wave deformation over
uneven bottoms. In the past, a great deal of efforts has been paid to investigate wave interactions
with irregular bathymetry (e.g. submerged bar) using physical experiments [57–59] or numer-
ical simulations [19–23, 25, 27, 29, 31, 32, 44, 46, 48]. In this study, the experimental setup (see
Figure 11) by Nakaoda et al. [58] is used. The wave flume has a length of 30m with a still water
depth h0=0.3m and hb=0.1m at the submerged bar. The upward and downward slopes of the bar
are 1:20 and 1:10, respectively. At the inflow boundary, an incident wave condition with wave height
H0=2.0cm and wave period T0=1.5s is used here, yielding K0h0=0.80. Free-surface elevations
were measured at seven stations. In addition, the velocity fields were measured at the depth of
z=−0.02m, −0.16m, and −0.26m at station 7 to examine wave decomposition on the downward
slope.

In the model, the computational domain is discretized by 1200 uniform grids along the x
direction. For NHM, three non-uniform vertical layers (�z=0.06, 0.06, and 0.18m) are used. For
NHM-BTE, only two vertical layers (�z=0.07 and 0.23m) are used and the reference velocity
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Figure 11. Sketch of the experimental setup and measurement stations by Nakaoda et al. [58]. Open
circles represent the locations where velocity measurements were taken.

Figure 12. Comparison of the free-surface displacement at six measurement stations among experimental
data (circles), three-layer NHM (x), and two-layer NHM-BTE (solid lines).

is set at zB(x, y)=−�B ·h(x, y), where �B=0.445. At the outflow boundary, the Sommerfeld
radiation boundary condition coupled with a sponge layer is used. Similar to the previous two
examples, the time step determined by Cr=0.25 is used.
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Figure 13. Comparison of horizontal u and vertical w velocities at station 7 among experimental data
(circles), three-layer NHM (x), and two-layer NHM-BTE (solid lines).

Figure 12 compares the free-surface elevations between model results and laboratory measure-
ments at six stations (from station 2 to station 7). As the incident wave propagates onto the upward
slope at stations 2 and 3, shoaling occurs and wave becomes steeper. As the wave rides on the
top of the bar, the development of higher harmonic due to nonlinearity occurs at stations 4 and
5. After that the release of generated higher harmonic appears on the lee side of the submerged
bar at stations 6 and 7. Consistent with NHMs [23, 44], slight discrepancies in the peak surface
displacement predicted by NHE-BTE appear at station 7, which may be due to the turbulence
generated by the lee side of the submerged bar [21, 37] or measurement issues [58]. However,
the overall results of surface displacement or wave height predicted by the two-layer NHM-BTE
and the three-layer NHM are in a good agreement with experimental data, demonstrating the
NHM-BTE’s capability in predicting dispersive and nonlinear wave characteristics over uneven
bottoms.

Figure 13 shows the excellent comparison of velocity fields between model results and experi-
mental measurements at the three different depths at station 7. The two-layer NHM-BTE clearly
captures the phenomena of wave decomposition in both horizontal and vertical velocity compo-
nents. Overall the above results indicate that NHM-BTE developed in this paper has the advantages
of efficiency and accuracy over traditional non-hydrostatic models in terms of required vertical
layers [19–21, 25, 27, 46]. In addition, NHM-BTE has the capabilities in resolving velocity profiles,
which cannot be easily obtained by traditional Boussinesq equations.
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Figure 14. Sketch of the experimental setup, waves over an elliptic shoal and
measurement sections, by Vincent and Briggs [60].

4.4. Wave propagation over a 3D elliptic shoal

Our last example is to model wave transformation over 3D varying bathymetries. In this study we
use non-breaking monochromatic wave experiments over an elliptic shoal by Vincent and Briggs
[60]. Figure 14 shows the experimental setup that consists of an elliptic shoal resting on a flat
bottom with a constant water depth h0=0.4572m outside the shoal. The boundary of the elliptic
shoal is ( x

3.05

)2+
( y

3.96

)2=1 (24)

and the water depth inside the shoal area is

hs=0.9144−0.762

√
1−

( x

3.81

)2+
( y

4.95

)2
(25)

Wave heights were measured along the six cross sections.
In the model, the computational domain covers 25m×25m (x=−6.1 to 18.9m× y=−12.5 to

12.5m). At the inflow boundary, an incident progressive wave with a wave height H0=2.54cm
and period T0=1.3s is specified, yielding K0h0=1.27. At the outflow boundary, a combination of
a radiation boundary condition and a sponge layer technique is used. At the two lateral boundaries,
impermeable and free-slip boundary conditions are applied. In other words, the velocity component
normal to the wall is zero and the normal gradient for the tangential velocity components is also
zero. The computational domain is discretized by a set of 500×250 horizontal grids. According to
the required layer in Figure 7, two vertical layers are employed and the thickness of the top-layer
cell is 0.08m. The reference velocity is at zB(x, y)=−�B ·h(x, y), where �B=0.445. The time
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Figure 15. Comparison of normalized wave height H/H0 among experimental data (circles), two-layer
NHM (x), and two-layer NHM-BTE (solid lines).

step is taken as 0.02 s and the total simulation time is 34 s to achieve a stationary wave condition.
The representative wave height H is obtained by averaging over the last four wave periods.

Figure 15 shows the comparison of model results and measurements of the relative wave height
H/H0 at the six cross sections. Along section 6, the wave propagates over the elliptic shoal and the
wave becomes steeper due to the shoaling effect. Behind the elliptic shoal, refraction takes place,
leading the focusing location at the center of section 1 and reaches the maximum relative wave
height H/H0=2.5 at x=4m along section 4. After wave focusing, diffraction occurs and wave
energy spreads laterally, which is clearly seen along section 2. The energy spreading leads to
wave re-focusing after x=5m along the sections 3 and 5. Figure 16 shows a perspective view
of the fully developed 3D wave passing over an elliptic shoal. Overall the results predicted by
both two-layer NHE-BTE and two-layer NHE are in excellent agreements with the measurements.
Specifically the two-layer NHE-BTE gives slightly better results, further demonstrating the success
of incorporating of Boussinesq-type like equations within the 3D NHM framework. Compared
with other NSE models by Li and Fleming [20] using 11 vertical grids, NHE-BTE using only
two vertical layers has accurately predicted 3D wave transformation including shoaling, refraction,
diffraction, and focusing processes.

5. CONCLUSIONS

In this paper, a novel approach that embeds the Boussinesq-type like equations into the NHM
at the top-layer pressure is developed. Instead of using an integration method [44], we introduce
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Figure 16. A perspective view for periodic wave propagation over an elliptic shoal.

the Boussinesq-type like equations under a virtual grid system into the NHM [32]. The top-layer
pressure is therefore analytically expressed with no assumptions of irrotational and inviscid flow.
The TCL technique is proposed and a reference location is used to optimize linear wave dispersion
property.

The efficiency and accuracy of the newly developed NHM-BTE are examined through four
examples. Results of the free sloshing wave example show that given an error tolerance of 	c�0.01
a two-layer NHM-BTE well resolves the wave phase speed up to Kh≈12, in comparison with
Kh=1 by a two-layer NHM and Kh≈3 by a four-layer NHM. A two-layer NHM-BTE also well
predicts phase speed, wave amplitude, and velocity field of the forced sloshing wave, demonstrating
NHM-BTE’s capability in predicting free-surface wave using a very small amount of vertical
layers. For wave propagation over a 2D submerged bar example, a two-layer NHM-BTE can
accurately resolve the phenomena of wave decomposition in surface displacement. In addition,
NHM-BTE has the capabilities in resolving velocity profiles, which cannot be easily obtained
by the traditional Boussinesq equations. Finally, a two-layer NHM-BTE is shown to accurately
predict wave transformation over a 3D varying shoal including shoaling, refraction, diffraction,
and focusing processes. Overall this type of models, i.e. NHM-BTE models using two vertical
layers, in contrast to models based on the Boussinesq-type equations [3, 5, 17, 48], would allow
us to effectively and accurately simulate large-scale (10 km × 10 km) wave propagation from
offshore deep water to nearshore shallow water. Progress on this application will be reported
later.
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7. Agnon Y, Madsen PA, Schäffer H. A new approach to high order Boussinesq models. Journal of Fluid Mechanics

1999; 399:319–333.
8. Gobbi MF, Kirby JT, Wei G. A fully nonlinear Boussinesq model for surface waves. II. Extension to O((kh)4).

Journal of Fluid Mechanics 2000; 405:182–210.
9. Wu TY. A unified theory for modeling water waves. Advances in Applied Mechanics 2001; 37:1–88.
10. Madsen PA, Bingham HB, Liu H. A new Boussinesq method for fully nonlinear waves from shallow to deep

water. Journal of Fluid Mechanics 2002; 462:1–30.
11. Dingemans M. Water Wave Propagation over Uneven Bottoms. Advanced Series on Ocean Engineering, vol. 13.

World Scientific: Singapore, 1997.
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